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Abstract

Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments
that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the
wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation
throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a
natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days,
spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field,
and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this
plant. We identified between ,110 and 190 time-varying gene expression clusters in the field, many of which were
significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal
components of vegetative shoot gene expression (PCveg) correlate to temperature and precipitation occurrence in the field.
The largest PCveg axes included thermoregulatory genes while the second major PCveg was associated with precipitation
and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a
framework for further understanding the genetic networks that are deployed in natural environments, and we connect
plant molecular genetics in the laboratory to plant organismal ecology in the wild.
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Introduction

Organisms in the real world are continuously exposed to

multiple environmental signals and must respond appropriately to

dynamic, fluctuating conditions found in nature [1]. Dynamic

environmental signals can differ spatially and temporally during an

individual’s life cycle with different degrees of predictability, and it

is in the context of complex natural environments that genetic

regulatory networks actually function and evolve. The response to

dynamic fluctuating environments is particularly critical for sessile

organisms such as plants that cannot react behaviorally to adverse

conditions but must respond by modulating development and

physiology to cope with changing conditions [2,3].

Temperature, water levels, biotic interactions and resource

availability are just some key environmental conditions that cue

organismal responses, and there have been significant advances in

dissecting how these and other ecological signals are transduced by

the organism to appropriate gene expression levels that may

ultimately determine phenotypes [2–9]. With very few exceptions,

however, studies on molecular genetic responses to the environ-

ment are undertaken in homogenous controlled laboratory

conditions. The natural world, in contrast, is anything but

controlled, and understanding how genes are regulated in natural

ecological settings in the midst of fluctuating environmental signals

remains a key objective of the new fields of ecological genomics

and systems biology [6].

Arabidopsis thaliana has become one of the key plant model

species, not only for studies of genetics and development but for

ecology and evolution as well [10–12]. This species is a weedy

annual plant, occupying disturbed habitats such as the margins of

agricultural fields as well as natural ruderal environments. It is

native to Europe and Central Asia [13], but has extended its range

to include eastern and northwestern portions of the United States

[13,14]. A large proportion of natural populations adopt the spring

annual strategy, with germination and flowering in spring [15].

Arabidopsis thaliana displays a wide range of ecological relationships,

including within- and between-species interactions and adapta-

tions to abiotic environments. It responds physiologically and

developmentally to a variety of environmental cues, including

light, daylength, vernalization, nutrient and water levels

[10,11,15], and can be affected by bacterial and fungal pathogens

[16], and by insect herbivory [17].

Despite the role of A. thaliana as a model plant system,

remarkably little is known about the phenotypic range and

performance of this species in the wild. Focusing on studies in

natural field conditions may thus provide opportunities for a more

comprehensive view, not only of ecological processes in this

species, but also of development and physiology not possible in
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controlled laboratory experimentation. Indeed, a few field studies

of A. thaliana have begun to shed light on the ecological genetics

and natural selection in this species in field conditions [18]. Other

field studies have looked at natural selection for and costs of

herbivory defense traits [19–21], seasonal germination timing [22],

fitness costs of R gene polymorphisms [23], the role of epistasis in

fitness-related traits [24], and the genetic architecture of flowering

time [25,26].

Although it is clear that organismal phenotypes and the genetic

architecture of various traits differ between controlled laboratory

and field conditions, the extent to which patterns of gene

expression is modulated in the wild is not at all understood.

There are a large number of global gene expression studies in A.

thaliana [27–31], and some notable investigations include a

comprehensive developmental expression map [29], a cell-specific

expression atlas of the root [28] and studies of circadian clock gene

regulation [27].

All these studies, however, were undertaken in controlled

laboratory conditions. Global gene expression studies of plant

species in field conditions [32–42] demonstrate that there are

significant transcription level differences between controlled and

field growth conditions. A study in A. thaliana used responses to

increased CO2 and ozone levels in Free Air CO2 Enrichment

(FACE) environment [32]. From this study, .1,000 transcripts

were either up- or down-regulated between controlled versus field

ambient conditions compared with high vs. low CO2 or ozone

levels, and there was a preponderance of genes associated with

general defense reactions, secondary metabolism, redox control,

energy provision, protein turnover, signaling and transcription

[32]. More detailed experimental studies have also managed to

connect specific genes with phenotypes; for example, seasonal

flowering time response in A. halleri in the wild has been shown to

be associated with expression of the FLC gene [43].

To contribute to our understanding of the ecological genomics

and systems biology of plants in the wild, we determined genome-

wide gene expression profiles in the shoot throughout the life cycle

of the model plant A. thaliana under natural field conditions. We

chose two distinct A. thaliana accessions Bayreuth-0 or Bay-0

(originally from a fallow field in Bayreuth, Germany) and

Shakdara or Sha (from a mountainous site at Pamiro-Alay,

Tajikistan) because there are genetic [44] and genomic resources

[45,46] in these accessions that can be further used to dissect

molecular mechanisms of environmental response. Our study

allowed us to identify genes that significantly vary across the spring

life cycle of these two accessions and determine patterns of

transcriptional co-regulation in field conditions. We found that in

addition to accession and flowering stage, temperature and

precipitation appear to be correlated with large-scale gene

expression patterns in the field, and a large number of co-

expressed gene clusters are enriched in loci responsive to several

abiotic and biotic stresses. Our results suggest that stress-

responsive loci are not only adaptive for extreme environments,

but are deployed during the life cycle of A. thaliana to deal with

normally fluctuating environments.

Results

A large fraction of protein-coding genes are expressed in
the Arabidopsis shoot in the wild

We assayed RNA from replicate pools of shoot samples for

genome-wide gene expression of A. thaliana across its life cycle in

the complex and natural conditions of the field using the

Affymetrix ATH1 gene chip. The field experiment spanned the

seedling (,4-leaf) stage to flowering in the late spring of 2008 at

the Cold Spring Harbor Laboratory field site (see Figure 1).

During this experimental period, daily temperatures ranged from

a mean low of 8.7uC to a mean high of 23.7uC. Of the 30 days that

the plants were outside, it rained only 8 days, with precipitation

levels during these days ranging from 2.5 to 31.8 mm.

Despite the possibility of environmental heterogeneity in this

outdoor field site, the replicates for the eight Bay-0 and ten Sha

samples produced very similar results (mean pairwise correla-

tion = 0.98, see Figure S1), which is comparable to replication

quality observed in controlled laboratory experiments [29]. Genes

were designated as expressed if they were observed in all three

replicates at a timepoint by the Affymetrix Microarray Suite 5

(MAS 5) algorithm [47], and we found that 47% to 58% of genes

in Bay-0 and 45% to 61% in Sha were expressed at each

timepoint. In total, we found that ,67% of genes were expressed

in at least one accession for at least one time point (see Figure S2).

We compared our results to those observed in the ATGenEx-

press [29] data set. In total, we detected 15,369 genes in at least

one accession (,67% of genes), which is less than the 19,105 genes

detected in the 48 comparable vegetative and flower tissue samples

from wild type Col-0 in the ATGenExpress data set. Only 53

genes that were not found in the Col-0 shoot expression atlas

showed expression in the Bay-0/Sha field dataset. The reduced

number of detected genes in our experiment could reflect the fact

that the ATGenExpress is a compendium of experiments done

under multiple experimental conditions, some of which may not

be relevant to the field conditions under which we conducted our

study. Moreover, the ATGenExpress analysis has greater power to

detect expression level differences given the larger sample sizes in

that study [29].

The majority of the genes that were expressed in Col-0

overlapped with both Bay-0 and Sha samples (14,005 genes) (see

Figure 1B). Across the Bay-0 and Sha field samples, expression for

7,459 genes (,33%) were undetected, of which more than half

were unannotated loci (4,626 genes in Bay-0 and 4,415 in Sha,

FDR,0.05; see Figure S3). Twelve other GO terms were

significantly over-represented among these unexpressed genes

Author Summary

Plants in the real world are continuously exposed to
multiple environmental signals and must respond appro-
priately to the dynamic conditions found in nature.
Environmental signals can fluctuate during an individual’s
life cycle with varying degrees of predictability, and
complex natural environments are where gene activity
evolves. We grew two natural accessions of the model
plant Arabidopsis thaliana in an open field in New York in
the spring and examined genome-wide gene expression
patterns in the wild. We find nearly 200 gene expression
clusters in these field-grown plants, and many of these
clusters were enriched in genes that had previously been
shown to be associated with expression under various
abiotic or biotic environmental stress conditions. Two
major principal components of gene expression were
associated with environmental fluctuations in temperature
and rainfall, and we identified several genes (such as the
thermoregulatory nucleosome occupancy gene ARP6 and
the drought-sensitive hormone biosynthetic gene AAO3)
that could be found in these principal components. By
exploring genome-wide gene expression in plants in the
wild, we were able to connect mechanistic aspects of plant
molecular biology with ecological responses in nature and
to begin to understand how organisms behave and adapt
in their natural environments.

Patterns of Arabidopsis Gene Expression in Nature
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across the two accessions, including defense response and

transcriptional regulation genes.

The flowering of A. thaliana in the field provides an internal

validation of the observed gene expression patterns, since several

genes have been identified that are associated with flowering and

flower development. We created a heat map of groups of unique

gene expression patterns (defined by cluster analysis, description of

analysis below) for which more than 50% of the variance was

explained by flowering status in both Bay-0 and Sha (see Figure 2).

As expected, these clusters contain several floral developmental

genes, including AP1 [48], AP3 [49], PI [50], AG [51], STK [52],

and SEP2 [53]. The observation that the expression of these floral

genes increase upon flowering provides confidence that our results

in the field are consistent with expectations based on previous

developmental genetic studies [29].

Strong differentiation in genome-wide gene expression
patterns between A. thaliana accessions

While we expected to find that the flowering states of A. thaliana

(vegetative vs. flowering) are transcriptionally distinct, we also

found that natural genotypic differences between accessions are an

equally important component of genome-wide differences in gene

expression patterns under field conditions. We ran a principal

variance components analysis (PVCA) [54] of the ,22,800 genes

expressed across the combined Bay-0 and Sha data set to examine

whether gene expression is explained by accession or flowering

status (vegetative or flowering). This approach first reduces the

dimensionality of the data set with principal components analysis

(PCA), and then computes variance components by fitting a mixed

linear model to each principal component (PCi = accession+flow-

ering status+accession-by-flowering status+error). For each factor

in the model, the variance components are averaged across all of

the principal components, but weighted by the eigenvalues for the

corresponding principal component.

Principal component 1 (PC1all) explained 18% of the variation

in genome-wide gene expression and clearly distinguished the two

accessions, while vegetative vs. flowering states were demarcated

along PC2all (16%) and PC3all (10%). The mixed linear model of

the principal components attributed approximately equal amount

of the transcriptional variance to accession (39%) and flowering

status (38%; see Figure 3). We modeled the effects of accession and

flowering status on gene expressions with a mixed model analysis

of variance (ANOVA): gene expression = accession+flowering

status+accession-by-flowering status+error. The analysis indicated

that the two accessions differed significantly in 3,344 genes (,14%

of the transcripts; see Figure 3), which is within the range

previously found for several accessions [55]. This apparent

discrepancy between the number of genes that significantly vary

between accessions and the fraction of transcriptional variance

explained by accession indicates that a small fraction of genes can

explain a large amount of expression variation, which has been

shown in other comparisons between accessions [56].

In addition, 2,955 genes (13% of transcripts) significantly

differed between vegetative and bolting shoots, 569 of these were

also different between accessions, and 117 of these also showed a

significant interaction effect between accession and flowering

status (see Figure 3). The overall amount of variance explained by

the interaction term was very small (,0.01%; only 309 genes

total). These results suggest that while the flowering states of A.

thaliana (vegetative vs. flowering) are transcriptionally distinct,

natural genotypic differences between accessions show equally

significant genome-wide differences in gene expression patterns

under field conditions.

A gene ontology (GO) enrichment analysis on the combined

data for the main effects of accession, flowering status and the

interaction of these two terms showed accession differences are

enriched for genes in the sulfate assimilation, glucosinolate and

glutathione biosynthesis pathways, while unannotated and trans-

lation genes were underrepresented (FDR q,0.05, see Table S1).

There are 21 GO categories overrepresented between vegetative

and flowering states, including genes that are associated with

development, pollen exine formation, and sexual reproduction.

Using the same PVCA and mixed model ANOVA approach,

we also looked at global trends in gene expression observed within

each of the two accessions by examining how variation in genome-

wide transcription levels is explained by various environmental

factors. We examined the effects of age, flowering status (i.e.,

Figure 1. Field environmental conditions and total gene expression in A. thaliana. (A) The top graph shows the daily maximum (red) and
minimum temperatures (blue), and the lower graph shows the daily levels of precipitation in the field during the experiment. The sampling days
(given as days after germination) are shown in the bottom. The arrows indicate the sampling points, and the onset of flowering for Bay-0 and Sha in
the experiment are shown. (B) The total number of genes expressed in Bay-0 and Sha in the field, compared to those observed for Col-0 shoot tissue
in the ATGenExpress data set [29].
doi:10.1371/journal.pgen.1002662.g001
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vegetative vs. flowering), minimum and maximum daily temper-

atures, and daily precipitation, using the mixed linear model: gene

expression = age+flowering status+minimum temperature+maxi-

mum temperature+precipitation+error (see Figure 4).

Temperature and precipitation were the only environmental

measurements we were able to obtain from the field site. Another

environmental variable was daylength, but this was correlated with

age (i.e., increasing daylength during the field experiment). We

found weak correlations between the other environmental features

during the field study: maximum and minimum daily tempera-

tures (r2 = 0.17; p,0.007), maximum temperature and precipita-

tion (r2 = 0.26; p,0.001), and minimum temperature and

precipitation (r2 = 0; p,0.77).

Looking at each accession separately, flowering status explained

more than 50% of the variance in expression across the genome

for Bay-0 and over 30% of the variance for Sha. The only

environmental variable that explained a substantial portion of

transcriptional variance was precipitation (23% in Bay-0, 13% in

Sha); plant age, minimum and maximum temperature explained

negligible levels of variance (see Figure 4).

Significant variation in gene expression across the A.
thaliana life cycle in the field

Genes whose expression levels are variable in time across the life

cycle in the field are of great interest, since they may provide

insights on the transcriptomic response to development and

environment (i.e., transcriptomic plasticity). An alternative ap-

proach to ANOVA that may be more appropriate for significance

testing of time course microarray data fits a cubic spline to gene

expression levels across time and tests for significant deviation

from an invariant gene expression pattern [57,58]. Using this

approach, 12,599 genes in Bay-0 and 15,824 genes in Sha (FDR of

q,0.05) display significant variation in time. GO analyses of these

genes found enrichment for genes associated with metabolism,

microtubule-based processes, heat and stress response, and

transport processes. While the larger number of time-variable

genes in Sha could reflect higher developmental and environmen-

tal transcriptomic plasticity (i.e. Bay-0 might be more robust), it

more likely reflects the larger number of time-points sampled in

Sha and its consequent exposure to a wider range of environments

due to later flowering.

Figure 2. Heat map for Bay-0 genes that show differential expression during flowering. The numbers listed to the left indicate the cluster
number identified in the silhouette analyses. The four most significant (i.e., lowest p values) GO term categories enriched for each cluster are shown
on the left. The vegetative and flowering samples are indicated at the top, and the rows corresponding to various flower development genes are
shown. Several developmental genes associated with bolting and flower development are highlighted. Scale: from brightest blue equals most down-
regulated to brightest red equals most up-regulated.
doi:10.1371/journal.pgen.1002662.g002

Patterns of Arabidopsis Gene Expression in Nature
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Several co-expressed gene clusters in the wild are
enriched for abiotic and biotic stress-inducible genes

A major goal of this study is to identify genes and gene clusters

that may be associated with fluctuations in natural environmental

conditions in the field. One approach we took was to identify gene

clusters in the expression profiles, and correlate these with

environmental factors and previously published microarray studies

of abiotic/biotic stress responses.

We identified distinct co-expressed gene clusters in the life cycle

of these accessions in the wild. We used the mean expression

values of significantly time-variable genes found at an FDR of

q,0.01 to isolate strong signatures of response to environmental

factors. Under this criterion, we analyzed 3,827 genes in Bay-0

and 8,215 genes in Sha using the silhouette method [59], to

identify 109 co-expressed gene clusters in Bay-0 and 188 clusters in

Sha (see Figure 5). This number of clusters was similar to that

identified by K-means clustering with a correlation of between

0.75 and 0.8 in Bay-0 (105 and 163 distinct clusters) and between

0.7 and 0.75 in Sha (169 and 277 distinct clusters).

For each cluster, we used the PVCA approach to fit the mixed

linear model: gene expression = age+flowering status+minimum

temperature+maximum temperature+precipitation+error. There

were several clusters that showed .50% of the variance explained

by flowering status, although no cluster showed transcriptional

effects due to plant age. Among the environmental responses,

there were several clusters for which more than 50% of the

variation was explained by precipitation – indicating up- or down-

regulation of genes under high precipitation (.25 mm but not at

,10 mm). While several clusters showed a small percentage of the

variance explained by either minimum or maximum daily

temperature, no cluster showed more than 50% of the variance

explained by these factors suggesting that the genes responding

specifically to temperature may be more dispersed across the

structure of clusters we identified. We also compared the genes in

these clusters to published microarray studies on gene expression

under known environmental stresses. These studies encompass

various abiotic and biotic stresses that affect gene expression,

including high light [60], cold, drought, heat, osmotic stress,

oxidative stress, salt, genotoxins, UV-B exposure, wounding [61],

and infection by RNA virus [62,63], bacterial pathogens, fungi

and herbivores [64]. Combining these data sets, more than half of

the genes on the ATH1 array were associated with at least one

stress (13,153 of 22,800 genes). Enrichment in specific clusters for

genes associated with differential expression in each of these stress

responses could provide clues about the ecological factors that

drive the underlying field expression patterns.

Figure 3. Components of transcriptional variance in A. thaliana in the field. (A) The number of genes that significantly differ between Bay
and Sha accessions, flowering status, and that show an accession-by-flowering status (development) interaction. (B) The percent of the transcriptional
variance explained by these factors.
doi:10.1371/journal.pgen.1002662.g003

Figure 4. Environmental components of transcriptional variance in A. thaliana in the field. The blue indicates Bay-0 and the red Sha.
doi:10.1371/journal.pgen.1002662.g004
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An intriguing result of the stress annotation analysis was that

many gene clusters appeared to contain genes that responded to

multiple laboratory stress treatments. For example, six co-

expressed gene clusters in Bay-0 and ten clusters in Sha appeared

to contain genes that were responsive to nine or more stresses (see

Figure 5), suggesting that these loci were associated with

generalized stress responses. These include several genes encoding

heat-shock proteins (e.g, Hsp70, Hsp101, Hsp17.6), the cold- and

ABA inducible gene kin1, cold-regulated genes cor15a and b, and

the stress-responsive LT16 and sti1-like protein-coding loci. These

general stress response clusters included both biotic and abiotic

stresses in all but one of the Bay and one of the Sha clusters, which

were enriched for only abiotic stresses. In general, we found strong

overlap between response to abiotic and biotic stresses. For

example in Bay, 28 clusters were enriched for both types of stress,

while 15 were enriched for only abiotic stresses and five only for

biotic stresses. In Sha, 42 clusters were enriched for both types of

stress, with 36 clusters enriched only for abiotic stresses and 11

clusters enriched only for biotic stresses.

On the other hand some clusters were enriched for response to

only one specific stress: for example nine Sha clusters were

enriched only for response to cold, four clusters were enriched only

for response to osmotic stress, two clusters were enriched only for

response to UV-B radiation, and five clusters were enriched only

for response to herbivory (see Figure 5).

Principal component analysis of vegetative stage gene
expression in the wild

Our analysis looked at expression across both vegetative and

reproductive stages of the life cycle. Given the strong effect of

flowering status on gene expression patterns, we also undertook a

principal component analysis of gene expression on the vegetative

stages in the field, and examined correlations with environmental

conditions of the PC scores. A subset of genes significantly

expressed in both accessions across vegetative stages, were

analyzed to minimize the differences due to flowering stage (i.e.

PC1all = 17.9% of the variance), and accession (PC2all = 15.6% of

the variance). Thus a total of 14 samples with three replicates each

Figure 5. Gene expression clusters in A. thaliana field transcriptomes. Silhouette analysis defined (A) 188 clusters in Sha and (B) 109 clusters
in Bay-0. Each row indicates a specific cluster. The components of the transcriptional variance explained by environmental (precipitation, maximum
and minimum daily temperatures) and developmental factors (age and flowering status) are shown. The percent of the transcriptional variance
explained by a factor is shown in color (blue, ,25%; yellow, between 25–50%; orange, between 50–75%; red, .75%). We also examined each cluster
for enrichment of genes shown to be differentially expressed in previously-studied transcriptome analyses. A red bar indicates that the cluster is
enriched in genes differentially expressed under that stress condition.
doi:10.1371/journal.pgen.1002662.g005
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(6 samples from Bay-0 and 8 samples from Sha) and 8,954 genes

were analyzed by principal component analysis.

Ten vegetative stage principal components (PCveg) captured

,70% of the variation between accessions and across time points.

To visualize the trends of the variation, the mean PCveg values for

each accession were plotted against their corresponding time

points (see Figure 6). Only the first five vegetative stage principal

components are shown as they captured more than 50% of the

transcriptional variation. PC1veg, PC2veg and PC5veg showed no

significant differences between Bay-0 and Sha. In contrast PC3veg

and PC4veg showed differences across most time points between

accessions, suggesting that these principal components still capture

some of the expression differences due to genetic background. This

indicates that the subset of genes significantly expressed in

vegetative stages was not sufficient to account for accession effects

(i.e. PC1all), but it uncovers other trends of gene expression

variation that have an environmental basis.

To assess possible environmental or developmental associations

with these principal components of gene expression, we used

multivariate regression to regress PCveg values on measured

variables (see Table 1). Minimum daily temperature was not

considered in the model because it was co-linear with maximum

daily temperature. PC1veg was significantly negatively correlated

with maximum daily temperatures (b= 20.025, p,0.001) and

marginally significant with RLN (b= 0.025, p,0.049), explaining

a significantly large proportion of the variance (adjusted r2 = 0.87,

p,0.0001). PC2veg was significantly correlated to daily precipita-

tion levels (b= 20.17, p,0.001) and age (b= 20.014, p,0.001),

which explained significant proportions of the variance (adjusted

r2 = 0.53, p,0.0001). The third principal component of global

vegetative gene expression did not show a significant linear

correlation with any of the environmental factors or plant

development. These results predict that genes correlated to PC1veg

might be related to temperature responses, whereas those that

correlate to PC2veg might be related to water availability/drought

responses.

We examined the gene sets for gene ontology (GO) term

enrichments (p#0.01; hypergeometric distribution) to identify

significantly over-represented functional gene classes in Virtual

Plant 1.0 [65] (see Table 1). First, the entire set of 8,954 genes that

showed significant time series expression differences in the

vegetative stages, was analysed for GO term enrichment; these

showed cell part, membrane, plasma membrane, response to chemical

stimulus, response to stimulus, response to abiotic stimulus, intracellular part,

membrane bounded organelle, and intracellular membrane-bounded organelle

as over-represented gene ontology categories.

In order to understand what gene functions are associated with

each principal component, we conducted GO term enrichment

analyses for gene sets associated with each PCveg. We selected

genes that showed extreme PC loadings for each of the PCveg axes

(upper and lower 2.5 percent of the quantile distributions); thus we

selected the 5% of the genes that showed the best correlation to

each PCveg. The results of the analyses on each vegetative stage

principal component showed that genes strongly associated with

PC1veg are mainly from the GO categories response to temperature

stimulus, response to abiotic stimulus, response to heat, response to stress,

response to stimulus, which is consistent with the observation of

maximum daily temperature and temperature fluctuation explain-

ing a significant proportion of the variance in this principal

component of expression. Genes with strong loadings on PC2veg

are orthogonal (uncorrelated) to genes in PC1veg, and were over-

represented in the GO categories response to chemical stimulus genes,

which might reflect growth and stress responses regulated by

common hormone signaling cascades [66] rather than the

enrichment in the 8954 genes dataset. Genes strongly associated

with PC3veg are typically unannotated genes, but 32 are transposable

elements. PC5veg was associated with genes related to fatty acid

metabolism [67], while genes with high loadings in PC4veg did not

show overrepresentation from any GO category. Gene lists for

PC1veg and PC2veg (2.5 and 5% of quantiles) are shown in the

Tables S2, S3, S4, S5.

Expression of the temperature response regulatory
network in the vegetative stage in the wild

It has recently been shown that approximately half of the

transcript responses to ambient temperature in A. thaliana are

regulated by the chromatin remodeling gene ARP6 [68]. This

gene, formerly known as ESD1, encodes a subunit of the SWR1

complex required for insertion of the alternative histone H2A.Z

into nucleosomes [69,70]. ARP6 regulates global response to

ambient temperature in part by modulating nucleosome occupan-

cy of H2A.Z [68].

The ARP6 gene was associated with PC1veg, and its expression

was significantly correlated with this principal component

(r2 = 0.49, p,0.001; see Figure 7), consistent with PC1veg being

Figure 6. Vegetative stage principal component analyses of A.
thaliana field transcriptome. The first five principal components are
indicated. Principal component scores are on the y-axis and sampling
days on the x-axis. The dashed line gives the PC score for Bay-0 and the
dotted line for Sha. At each sampling day, the mean PC score across the
three replicates are given for Bay-0 (circles) and Sha (squares), with
standard error bars (+/2 1 SE).
doi:10.1371/journal.pgen.1002662.g006
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correlated with temperatures in the field. One other temperature-

regulated gene is the heat shock protein HSP70 [71], which is also

regulated by ARP6 [68]. Like ARP6, the expression of the HSP70

gene was significantly correlated with PC1veg (r2 = 0.73, p,0.001;

see Figure 7).

Our results and those of Kumar and Wigge [68] both suggest

that ARP6 may regulate global temperature responses in the field

by controlling nucleosome dynamics. We identified other genes

that may be co-regulated with ARP6 by finding loci whose

expression in the field matched the absolute expression pattern of

ARP6 in our data, using Pavlidis template matching [72]. Previous

studies have shown that temperature explains 47% of the variation

in ARP6 expression [r2 = 0.47; 68]. We used this threshold in our

template matching analysis, and found that out of the 8,954 genes

in our analysis, ,40% (3,583 genes) in Bay-0 and ,24% (2,118

genes) in Sha displayed expression profiles that were correlated to

the ARP6 field expression template at this threshold cut-off. These

are consistent with previous studies that suggest that ARP6 can

control responses to temperature for a large number (,5,000

genes) in A. thaliana [68].

To gain further understanding about the functions of these

genes that are co-regulated with ARP6, we looked for over-

represented GO term categories. One GO term that was enriched

was response to heat with 47 genes in Bay-0 (p,1026), and 27 genes

in Sha (p,0.0003). The other enriched category was unannotated

genes, with 573 genes in Bay-0 (p,1028) and 339 genes in Sha

Table 1. Characteristics of the major vegetative stage principal components of A. thaliana genome-wide gene expression in the
field.

GO Term enrichment Number of genes p Environmental correlation

PC1veg response to temperature stimulus 22 6.461025 TMAX***

RLN*

response to abiotic stimulus 40 6.761025

response to heat 12 4.061024

response to stress 56 4.961024

response to stimulus 81 1.861023

biosynthetic process 95 9.961023

PC2veg response to chemical stimulus 44 5.661023 PPT**

Age**

PC3veg Unannotated 99 4.761025

PC4veg None RLN**

Age**

PC5veg fatty acid metabolic process 13 7.161023

TMAX: Maximum daily temperature, PPT: daily precipitation; RLN: rosette leaf number.
***p,0.001;
**p,0.01.
*p,0.05.
doi:10.1371/journal.pgen.1002662.t001

Figure 7. Gene expression in A. thaliana under field conditions correlated with PC1veg. Each point is the LS mean expression level of (A)
ARP6 and (B) HSP70 in Bay-0 (open circles) and Sha (closed circles) for each time point. The dashed line shows the linear regression through the data.
*** = p,0.001.
doi:10.1371/journal.pgen.1002662.g007
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(p,0.00015), out of which 67 and 47 genes respectively are

transposable elements. The latter suggests that ARP6 activity in the

wild might be regulating other functions still to be described, and

that transposable element activity may be triggered in part by

environmental temperature fluctuations.

ABA hormone signaling gene expression is associated
with daily precipitation levels in pre-bolting plants

The second global vegetative principal component (PC2veg) was

correlated to precipitation and fluctuating temperatures, and was

significantly associated with genes involved in chemical stimulus

response (p,0.007). Although among the genes associated with

PC2veg were those that are linked to auxin, cytokinin, gibberellic

acid and brassinosteroid hormones, genes involved in the hormone

abscisic acid (ABA) made up the largest fraction of hormone-

associated loci in this principal component. This is noteworthy

since ABA synthesis and signaling are known to mediate stress

responses to water availability and osmotic stress, including

drought and salinity stress responses, and PC2veg is significantly

correlated with daily precipitation levels (see Table 1).

Among the ABA-associated genes significantly associated with

PC2veg was ROP10, which encodes a plasma membrane-bound

rho-related GTPase protein that negatively regulates ABA

responses [73,74]. ROP10 expression was significantly correlated

with PC2veg (r2 = 0.42, p,0.001; see Figure 8). To identify other

genes that are co-regulated with ROP10, we obtained the genes

that matched its absolute expression pattern using Pavlidis

template matching. Unlike the temperature response analysis, we

did not use previous data to guide our choice of correlation

coefficient; we arbitrarily used a correlation coefficient of 0.7 in

this analysis. Using this criterion, we identified many more genes

co-regulated with ROP10 in Bay-0 (273 genes) than in Sha (18

genes). Consistent with our finding of ABA hormone associated

genes in PC2veg, and the significant correlation of this vegetative

state principal component with daily precipitation levels, we found

two genes in Bay-0 (At1g52080 and At5g61820) and one gene in

Sha (At1g01470) that appear to be regulated by ABA levels [74].

Other ABA-associated genes correlated with PC2veg include AAO3

(r2 = 0.71, p,0.001; see Figure 8), which encodes an enzyme that

catalyzes the last step of ABA biosynthesis in leaves [75], and

P5CS2 (r2 = 0.55, p,0.001) which encodes the rate-limiting

enzymes for ABA-associated accumulation of proline under water

stress [76,77].

Discussion

We have determined genome-wide expression profiles through-

out the life cycle of the model plant A. thaliana under ecological

field conditions to examine the nature of the transcriptome under

the complex environment of a natural climatic season. Our

analysis indicates that a majority of the genes in the A. thaliana

genome show significant changes in gene expression throughout its

life cycle in the field, and that accession is an important

component of transcriptional variation among individuals. There

are also clear effects of flowering status, as the onset of flowering

not surprisingly leads to large-scale changes in transcriptional

patterns in the A. thaliana shoot, with several genes associated with

shoot bolting and floral development increasing in expression (see

Figure 2). Despite the complexity in natural environments,

transcriptional patterns are clearly organized into ,100–200 co-

expressed gene clusters in our A. thaliana accessions. Genetic

studies have identified genetic networks that underlie plant

responses to abiotic stress, including networks associated with

drought responses [78], heat stress [79,80] and cold responses

[81]. Many of these networks contain genes that responded to

multiple, laboratory-induced environmental stresses that have

been identified by previous microarray studies in plants, including

transcriptional responses to temperature [81–83] drought [61,82],

salt stress [83], metals [84,85], nutrients [86,87] and biotic

challenges [88,89]. Indeed, many of our inferred field gene

expression clusters contain genes responsive to multiple environ-

mental factors (see Figure 5), suggesting that these clusters may be

responding to the complex conditions in field settings. It should be

noted that the spring field environment in which our plants grew

were not extreme in either temperature or precipitation levels, and

our findings indicate that previously described stress genes may be

associated simply with responses to normal environmental

fluctuations that plants generally experience during their life cycle.

Figure 8. Gene expression in A. thaliana under field conditions correlated with PC2veg. Each point is the LS mean expression level of (A)
ROP10 and (B) AAO3 in Bay-0 (open circles) and Sha (closed circles) for each timepoint. The dashed line shows the linear regression through the data.
*** = p,0.001.
doi:10.1371/journal.pgen.1002662.g008
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We were able to obtain measurements for daily temperature

and precipitation from our field site, and it appears that both of

these factors are significantly correlated with gene expression

patterns. Precipitation was correlated with global gene expression

patterns across the full development of the plant, while

temperature was correlated with expression only in pre-bolting

plants. This is unlikely to provide the full picture of responses to

environmental conditions in the field, since for some genes,

expression is probably associated with (i) complex, nonlinear

responses to these environments, (ii) interactions between envi-

ronmental signals, and (iii) responses to unmeasured environmen-

tal conditions. Future studies should provide greater breadth and

resolution in environmental measurements. As more data becomes

available, more complex relationships between gene expression

and environmental features, including complex interactions

between different variables, can be explored.

Despite the limitations of our environmental analyses, they

confirm the role of several genes and gene sets to field

environmental fluctuations, including ARP6 [68,90] and HSP70

[71] to temperature, and ROP10 [73] and AAO3 [75] to

precipitation. We did examine whether gene function for some

of these loci showed fitness effects under variable or stressed

environments (see Text S1, Figure S4 and Table S6). Using T-

DNA insertion mutants for 14 genes that are associated with

PC1veg and PC2veg, we compared fruit number in mutant vs. wild-

type lines under fluctuating temperature or decreased water

environments. We only saw a significant environmentally-

dependent effect of accession under changes in water availability,

associated with the genes AA03 and ALDH7B4 [93]. Contrary to

expectations, however, the decrease in fruit numbers in mutant vs.

wild-type lines was observed in benign (and not stressful)

environments (see Figure S4 and Table S6). More intensive

studies with a larger sample of genes may yet reveal fitness

consequences of other ecologically-relevant genes identified in our

analysis.

While there have been tremendous strides in understanding the

molecular genetic networks underlying plant phenotypes, we still

know very little about what happens in natural wild environments.

Indeed, there is growing interest in the study of the genetics of

adaptation in ecological field environments, especially as related to

climatic variables [94,95]. As we begin to study the genetic

networks associated with plant environmental responses [91,92],

we can correlate molecular networks with gene expression profiles

in the wild, identify natural variation in genes and genetic

networks and associated microevolutionary adaptations, and

establish relationships between gene functions and organismal

phenotypes [6]. This will allow us to link gene functions to

ecologically relevant responses of plants to their lives in the wild,

providing the foundation for the study of ecological genomics and

ecological systems biology that can illuminate the molecular basis

of species adaptations to real-world environments.

Materials and Methods

Study material and sites
We chose Bay-0 and Sha because they are rapid-cycling spring

annuals that germinate and flower under Northeastern US field

conditions [93]. These accessions have been genotyped at .1,000

gene fragments and thus have a large amount of SNP markers

available for further genetic characterization [45], and are the

progenitors of a recombinant inbred mapping population with

over 165 core lines that can be used for future QTL mapping

studies [44]. The field site at the Cold Spring Harbor Laboratory

greenhouses has similar, but milder climatic conditions to Bristol,

Rhode Island, which is the site of previous A. thaliana field projects

[25,93–95], and we had previously grown Bay-0 and Sha

accessions in this field site in the fall/winter/spring of 2006–2007.

Sampling and microarray experiments
We stratified seeds of Bay-0 and Sha for four days at 4uC and

planted them in flats in a mixture of equal parts topsoil, sand and

peat moss. We left the seeds under domes to germinate in an

ambient temperature greenhouse for 5 days, and moved them

outside on day 10 to acclimate the plants before transplanting to

the field. On day 13 (27 April 2008 at the ,4-leaf stage), we

planted seedlings in a 2-m2 field grid marked off every 2 cm2, and

distributed the two accessions across the grid in a completely

randomized design. For each accession, we collected three

replicates of the entire shoot of two individuals every three days,

between 4.5–5.0 hours after sunrise, starting five days after

transplant until bolting was observed for each accession (see

Figure 1A). We collected replicates for each sample within a 15–

20 minute window in a given day. We recorded bolting day as the

day when at least 50% of the plants of an accession had initiated

bolting. On this day for each accession (sample 6 for Bay-0 and

sample 8 for Sha), we collected three sets of replicates from both

bolted and non-bolted individuals. Three days after this bolting

date for each accession, we collected the final sample of bolted

shoots. Bolting occurred at 34 days for Bay-0, and we collected six

vegetative and two bolting timepoints. The Sha accession bolted at

40 days after planting, and we collected eight vegetative and two

bolting timepoints.

We collected a total of 18 samples in triplicate except for in Sha,

where one replicate was lost in the sixth sample timepoint. For

each replicate of each sample, we extracted total RNA using the

RNAEasy plant mini kit (QIAGEN), using all of the above ground

tissue for both plants. In the later stages of development, the total

material for reach replicate exceeded the limits recommended for

the Qiagen spin columns. In those cases, we used twice as much

RLT buffer to suspend the frozen finely ground tissue and

transferred half of the lysate to each of two spin columns. The two

halves of the sample were kept separate through the collection, but

were combined before quantification and hybridization to the

microarray chips. The New York University Medical Center

Genome Core Facility performed the hybridization of RNA and

scanning to Affymetrix ATH1 chips according to manufacturer’s

protocols (Affymetrix).

Data analysis
In order to compare our results to those observed in the

ATGenExpress [29] data set, we used the Affymetrix Microarray

Suite 5 (MAS 5) algorithm [47,96] to determine if genes were

expressed at any time point. Genes were considered expressed if

they were observed in all three replicates of a sample. We used

JMP/Genomics with the SAS statistical package (Version 9.1.3 for

Windows; SAS Institute, Cary, NC, USA) and Virtual Plant 1.0

[65] for all initial PVCA, PCA, correlations, ANOVA and Gene

Ontology (GO) analyses. Because the ATH1 microarray was

designed based on the Col-0 accession, different single feature

polymorphisms (SFPs) for probes within each probe set may exist

for Bay-0 and for Sha, and probe mis-hybridization may occur

when examining the transcriptome of Bay-0 and Sha [97]. To

correct for this problem, we ran analyses on different imports of

the raw (.cel file) data filtering the appropriate probes that

contained SFPs for Bay-0, Sha, or for both depending on the

analysis. After importing the raw data into JMP/Genomics with

the appropriate filter, we background transformed the data with

RMA across the collection of microarrays. Raw expression was
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summarized by probeset with a median polish and log2

transformation. We used the TAIR 9 annotation file to obtain

the probe to gene matches.

We used principal variance components analyses [PVCA; 54] to

examine global expression trends associated with accession and

flowering status. The PVCA approach first reduces the dimen-

sionality of the data set with PCA, and then computes variance

components by fitting a mixed linear model to each principal

component, treating each factor of interest in the model as a

random effect (including continuous variables). We used the model

PCi = accession+flowering status+accession-by-flowering statu-

s+error, where i indicates each principal component, starting with

1 and continuing through all principal components calculated in

the PCA. The variance component for each factor is obtained by a

weighted averaging across the values calculated for each principal

component, weighted by the eigenvalues for the corresponding

principal component. We used the same factors in a mixed model

ANOVA to directly fit the model to gene expression (ANOVA

model: gene expression = accession+flowering status+accession-by-

flowering status+error). We also used the same PVCA and mixed

model ANOVA approach to examine a larger model that

incorporated age and the environmental factors maximum daily

temperature, minimum daily temperature and daily precipitation

(ANOVA model: PCi or gene expression = age+flowering sta-

tus+minimum temperature+maximum temperature+precipitatio-

n+error) within each accession.

Finally, we used the EDGE program designed for significance

testing of time course microarray data that fits a cubic spline to

gene expression levels across time and tests for significant deviation

from an invariant gene expression pattern [57,58]. We ran a GO

analysis in JMP Genomics to identify association with gene

ontology categories for each cluster.

Cluster analysis
We used K-means clustering on the mean expression values of

the significant genes from a stringent pairwise ANOVA analysis

(FDR q,0.01) for Bay-0 (3,827 genes) and Sha (8,215 genes).

Although an r = 0.7 has been arbitrarily used in other microarray

analyses to define the number of clusters within a data set, we used

the silhouette function in MATLAB (MathWorks 2009) to find an

appropriate number of distinct clusters of genes that behave

similarly across the data sets [59]. The silhouette statistic is a

pairwise method of evaluating the amount of similarity of

individuals within a cluster compared to each of the individuals

within each of the other clusters. By running this statistic on an

increasing number of clusters, the silhouette approach allowed us

to identify an appropriate number of clusters given the structure of

the data [98]. We identified the appropriate number of distinct

clusters within each accession when the average silhouette value of

the worst cluster became 0 and each successive increase in the

number of clusters continued to show that the average silhouette

value of the worst cluster was 0 or less than zero. We also ran GO

enrichment analysis to identify association with gene ontologies for

each cluster using JMP Genomics. To identify which clusters are

associated with age, flowering status or environmental factors, we

ran PVCA on all of the genes in each cluster separately for all Bay-

0 and Sha clusters.

Stress annotation analysis
We created a functional annotation file based on previously

published microarray data that had reported differential regula-

tion of specific genes in response to several abiotic and biotic

stresses. These include 118 high light response genes [60]; 4,972

cold, 1,562 drought, 3,990 heat, 5,842 osmotic, 511 oxidative,

5,148 salt, 1,219 toxins, 3,792 UVB and 1,771 wounding response

genes [61]. Biotic stresses include 97 [62] and 3,687 [63] RNA

virus response genes; 2,034 bacterial pathogen response genes, 151

fungal pathogen response genes, 2,397 herbivore response genes

[64]. Combining these data sets, more than half of the genes on

the ATH1 array were associated with at least one stress (13,153 of

22,800 genes).

Principal component analyses of vegetative stages
We performed a more detailed principal component analysis

(PCA) in vegetative stages using JMP Genomics (SAS). Probes

were normalized and centered to zero to determine the main

trends of the variation across the samples. PCA was done using

only genes that are significantly expressed (q,0.05) in both Bay-0

and Sha in vegetative stages (8,954 genes, representing 40% of the

original dataset). Thus, trends in gene expression in each sample

can be represented as PC loadings (i.e., PC1veg, PC2veg, PC3veg) in

an allometric gene expression scale. To assess whether trends in

gene expression were influenced by environmental factors or

development, we ran a multivariate regression analysis using the

PCveg scores as a response variable to maximum daily temperature

(TMAX), daily precipitation (PPT), rosette leaf number (RLN),

rosette diameter (RD), and plant age in the following model

[PCveg = TMAX+PPT+RLN+RD+age+error]. Variance inflation

factors were below 10, indicating low co-linearity between

variables. We ran the regression analysis on the first five PC axis

scores using an FDR of 0.05.

To identify genes contributing to each PC axis, we selected

genes that showed extreme PC loadings for each of the PCveg from

the upper and lower 2.5% of the quantile distributions in the PC

loadings, which identified a subset of 448 genes in each PCveg.

Because the PCs are orthogonal axes, the genes driving the

variation in PC1veg do not intersect with the genes in PC2veg and

PC3veg. The gene lists were analyzed for GO enrichment (p#0.01)

to identify significantly over-represented functional gene classes in

Virtual Plant 1.0 [65].

Several genes in these gene lists caught our attention, including

ARP6 and ROP10. To obtain lists of genes that are co-expressed

with ARP6 and ROP10, Pavlidis Template Matching was done

using the Multiple Array Viewer software, with absolute

correlation coefficients as thresholds [72].

Supporting Information

Figure S1 Replicate quality for eight Bay-0 and 10 Sha samples.

Average pairwise correlations between triplicate samples (with the

exception of Sha timepoint 7 for which one sample was lost) for

each sample.

(TIF)

Figure S2 Number of genes considered ‘‘present’’ in all three

replicates by Affymetrix MAS 5 algorithm. Shown are counts of

genes present for each sample for Bay-0 and Sha as well as across

all Bay-0 and across all Sha and across both. Also shown are the

total gene counts with ‘‘present’’ calls across all three replicates in

the whole ATGen Express data set and what we consider the

relevant comparison of non-mutant, above ground, non-senescent

tissue.

(TIF)

Figure S3 Gene Ontology (GO) categories for genes that were

considered ‘‘absent’’ in all three replicates of at least one sample.

Approximately 1/3 of the genome of both Bay-0 (8,322 genes) and

Sha (7,948) were not detected in this study: (A) By far the majority

in both accessions were unannotated genes. (B) Typically the
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number of genes in each GO category was similar across the two

accessions.

(TIF)

Figure S4 Fitness assays showing the mutants that had

significant accession-by-environment interaction as response to

drought.

(TIF)

Table S1 GO categories for genes that were detected as

significantly different in an ANOVA for the main effects of

accession and flowering status. Although there were 306 genes that

showed a significant interaction.

(DOCX)

Table S2 List of genes most strongly correlated to PC1veg (upper

and lower most 2.5% of the quantile distributions).

(DOCX)

Table S3 List of genes correlated to PC1veg (upper and lower

2.5% to 5% of the quantile distributions).

(DOCX)

Table S4 List of genes most strongly correlated to PC2veg (upper

and lower most 2.5% of the quantile distributions).

(DOCX)

Table S5 List of genes correlated to PC2veg (upper and lower 2.5

to 5% of the quantile distributions).

(DOCX)

Table S6 Significant differences in fitness (fruit number)

associated with gene functions in fluctuating temperature (PC1veg)

and water availability (PC2veg) treatments

(DOCX)

Text S1 Fitness analysis.

(DOC)
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